

DPF

Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/46		
video Solution on YouTube:-		https://youtu.be/veQ1_ryXN94		
Vritten Solution on Website:-		https://physicsaholics.com/note/notesDetalis/19		
Q 1.	(a) Temperature of ta(b) Intensity of elect(c) K.E. of electrons	K - rays decreases, when arget is increased ron beam is increased striking the target is increased striking the target is decreased		
Q 2.		length of X-rays produced in an X-ray tube is λ when the V. What is the minimum wavelength of the X-rays when the V/2?		
Q 3.	X-rays are being proproduced in vacuum (a) 3×10^8 m/s (c) 3.1×10^8 m/s	oduced in a tube operating at 10^5 V. The velocity of X-rays tube is (b) 2.8×10^8 m/s (d) 3×10^{10} m/s		
Q 4.	The X-rays produced wavelength of (a) 3.09×10^{-8} m (c) 4.09×10^{-8} m	d in a Coolidge tube of potential difference 40 V have minimum (b) $5.09 \times 10^8 \text{m}$ (d) $1.09 \times 10^8 \text{m}$		
Q 5.	A metal block is exp wavelength penetrate (a) 2 Å (c) 6 Å	cosed to beams of X-ray of different wavelength. X-rays of which the most (b) 4 Å (d) 8 Å		
Q.6	emitted from the targ	relerated electrons hits a target, a continuous X - ray spectrum is get. Which of the following wavelength is absent in X - ray ray tube is operating at 40,000volts? (b) 0.5 Å (d) 1.0 Å		
Q 7.	Which of the follows (a) 10000 Å (c) 1 Å	ing wavelength falls in X - ray region? (b) 1000 Å (d) 10^{-2} Å		

hysicsaholics

- In X-ray tube, when the accelerating voltage V is doubled, the difference between Q 8. the wavelength of K_{α} line and minimum wavelength of continuous X-ray spectrum
 - (a) Remains constant
- (b) becomes half
- (c) Becomes more than two times
- (d) Becomes less than two times
- Q 9. Mosley measured the frequency (f) of the characteristic X-ray from many metals of different atomic number (Z) and represented his results by a relation known as Moseley's law. This law is (a, b are constant)

(a)
$$f = a(Z - b)^2$$

(b)
$$Z = a(f - b)^2$$

(c)
$$f^2 = a(Z - b)$$

(b)
$$Z = a(f - b)^2$$

(d) $f = a(Z - b)^{1/2}$

Q 10. If the frequency of K_{α} X-rays emitted from the element with atomic number 31 is v, then the frequency of K_{α} X-rays emitted from the element with atomic number 51 would be

(a)
$$\frac{3}{5}$$
 v

(b)
$$\frac{51}{31}$$
 v

$$(c) \frac{\frac{5}{25}}{9} v$$

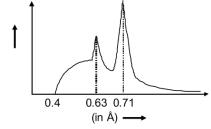
(b)
$$\frac{51}{31}$$
 v
(d) $\frac{9}{25}$ v

Q 11. The X-ray wavelength of L_{α} line of Platinum (Z=78) is 1.30 Å. The X-ray wavelength of L_{α} line of Molybdenum (Z = 42) is (constant b = 7.4)

(c)
$$2.70 \text{ Å}$$

Q 12. An X-ray tube operates at 40 kV. Suppose the electron converts 70% of its energy into a photon at each collision. Find the 2nd lowest wavelengths emitted from the tube. Neglect the energy imparted to the atom with which the electron collides

Q 13. The wavelength of ka X-rays produced by an X - rays tube is 0.76Å. The atomic number of the anode material of the tube is

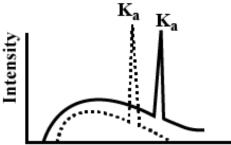

(Considering that Bohr's model is applicable)

(a) 57

(c) 34

- (d) 41
- Q 14. Figure shows intensity versus wavelength graph of X-rays coming from Coolidgetube with molybdenum as target element. The two peaks shown in graph correspond to K_{α} and K_{β} X-rays.

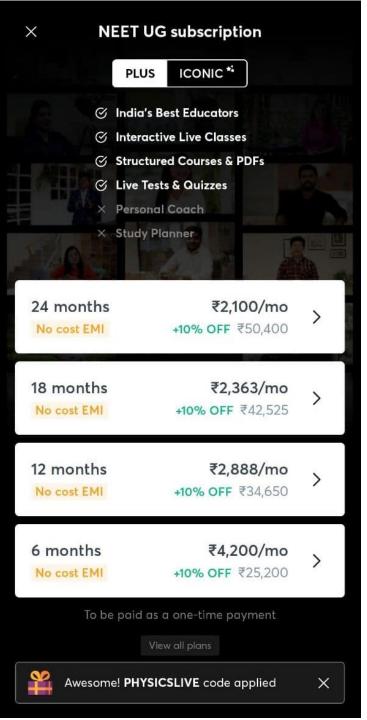
Wavelength of L_{α} X- rays from Coolidge tube will be (approximately) and Voltage applied across Coolidge tube is (approximately)



hysicsaholics

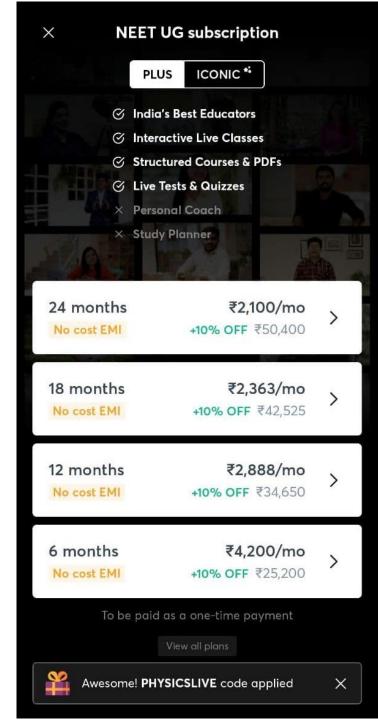
- (a) 1.2 Å, 20 kV
- (c) 5.6 Å, 31 kV

- (b) 2100 Å, 16 kV
- (d) 12.3 Å, 18 kV
- Q 15. Given curve shows the intensity wavelength relation of X-rays coming from two different Coolidge tubes A and B. The dark curve represents the relation for the tube A in which potential difference between the target and the filament is V_A and the atomic number of the target material is Z_A . Similarly dotted curve is for tube B. Respective quantities are V_B and Z_B for the tube B. Then



Wavelength

- (a) $V_A > V_B, Z_A > Z_B$
- (b) $V_A > V_B$, $Z_A < Z_B$ (c) $V_A < V_B$, $Z_A > Z_B$ (d) $V_A < V_B$, $Z_A < Z_B$


Answer Key

Q.1 c	Q.2 c	Q.3 a	Q.4 a	Q.5 a
Q.6 a	Q.7 c	Q.8 d	Q.9 a	Q.10 c
Q.11 a	Q.12 b	Q.13 d	Q.14 c	Q.15 b

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

Written Solutions

DPP- Modern Physics: X- Rays
By Physicsaholics Team

Amin =
$$\frac{h(}{eV})$$
 $\frac{hc}{kE}$

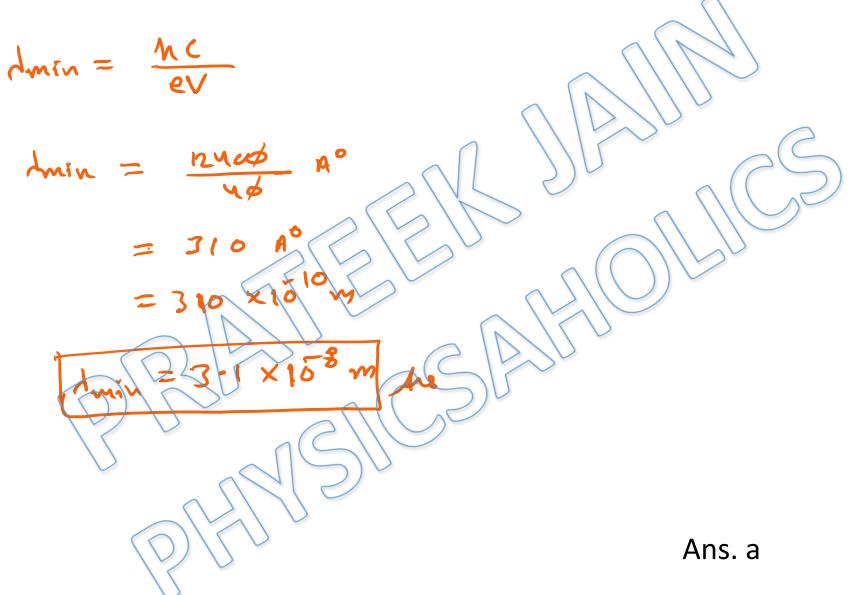
So; when $kE \uparrow \Rightarrow \frac{hc}{kE}$

Ans. c

$$d = \frac{h c}{e V}$$

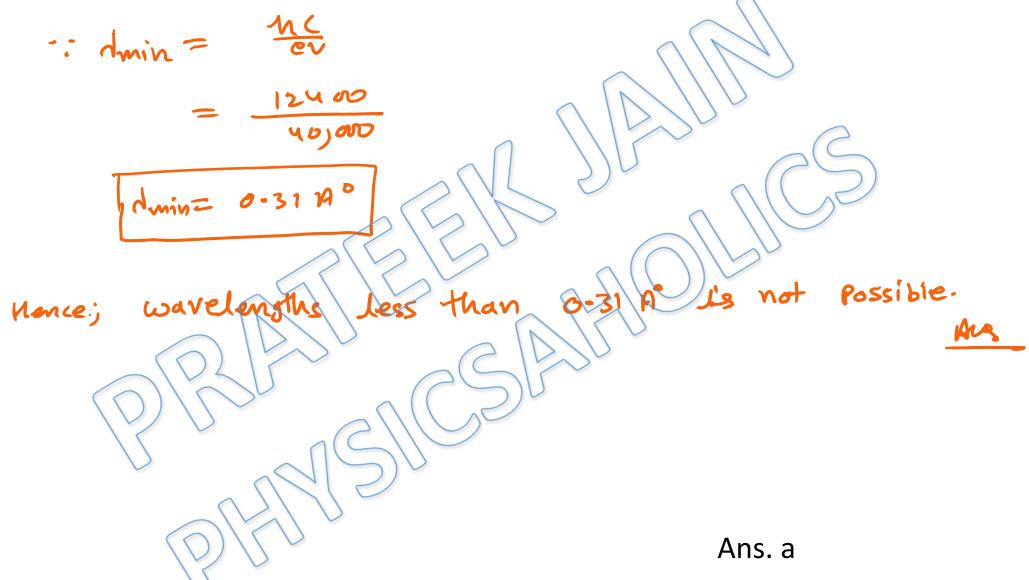
$$d = \frac{V_2}{V_1}$$

$$\frac{d_1}{d_2} = \frac{V_2}{V_1}$$

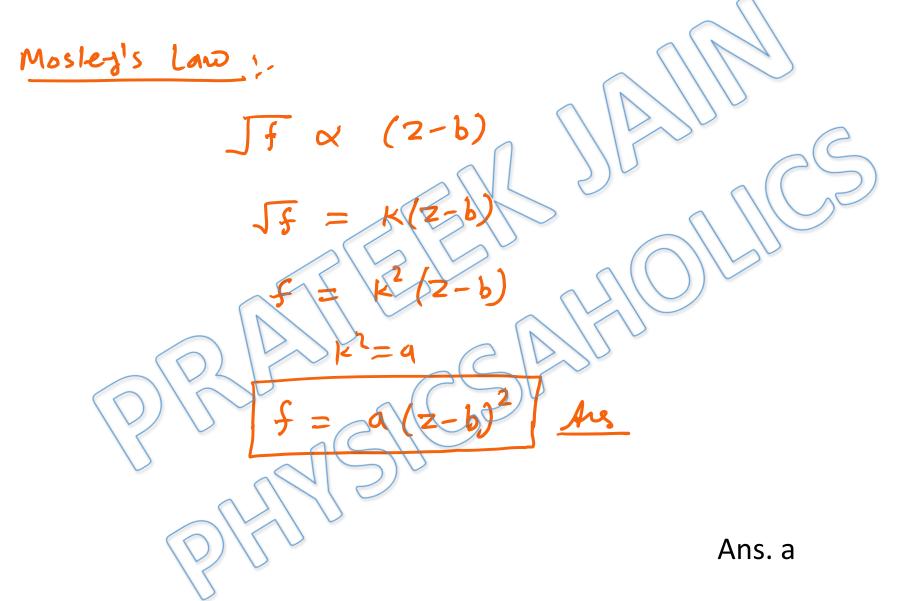

$$\frac{d}{d_2} = \frac{1}{2}$$

$$\frac{d}{d_2} = \frac{1}{2}$$
Ans. c

The X- Ray is nothing but an electromagnetic wave, and as know, electromagnetic waves travel with the speed of light in vacuum.


 $c = 3 \times 10^8 \text{ m/s}$

Solution: 5


Penetrating power is greater for lower wavelength. Ans. a

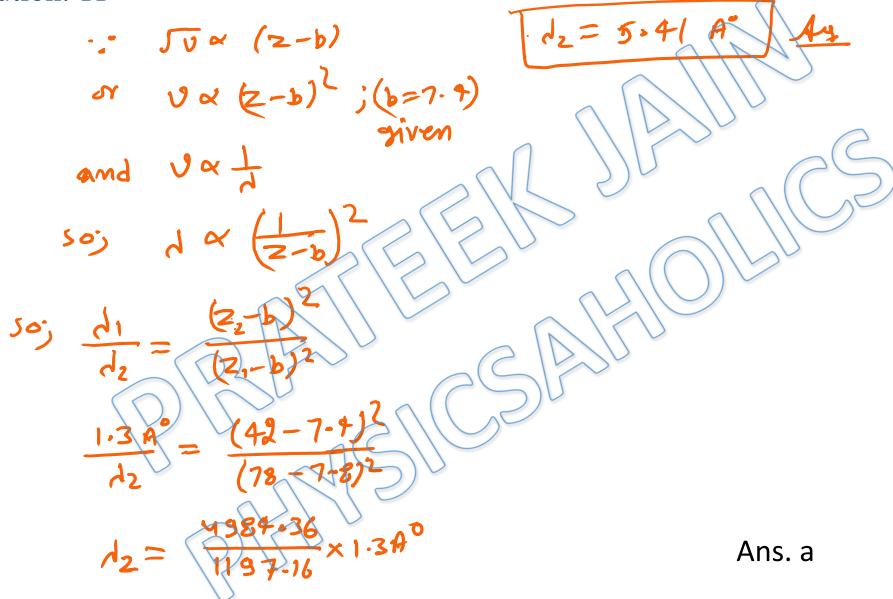
wavelengths of x-Rags granges from only Ans. c

but as we know dinin < dkx.

Ans. d

from Moseley's Law :

$$\frac{1}{\sqrt{1}} = a(2-1)$$


$$v = a^{2}(2-1)^{2}$$

$$v = (2-1)^{2}$$

$$v = (2-1)^{2}$$

$$v = (2-1)^{2}$$

$$v = (2-1)^{2}$$
Ans. c

operating voltage = 40kV

Energy of
$$e^- = 40 \text{ keV}$$

= 40,000 eV

Energy utilized = 70% of 40,000 eV

Energy utilized = 28,000 eV

Us Energy of Photom

So; wavelength of first Motor

 $d_{i}(in R^{0}) = \frac{12400}{E(eV)}$

$$\frac{1}{1} = \frac{12400}{281000}$$

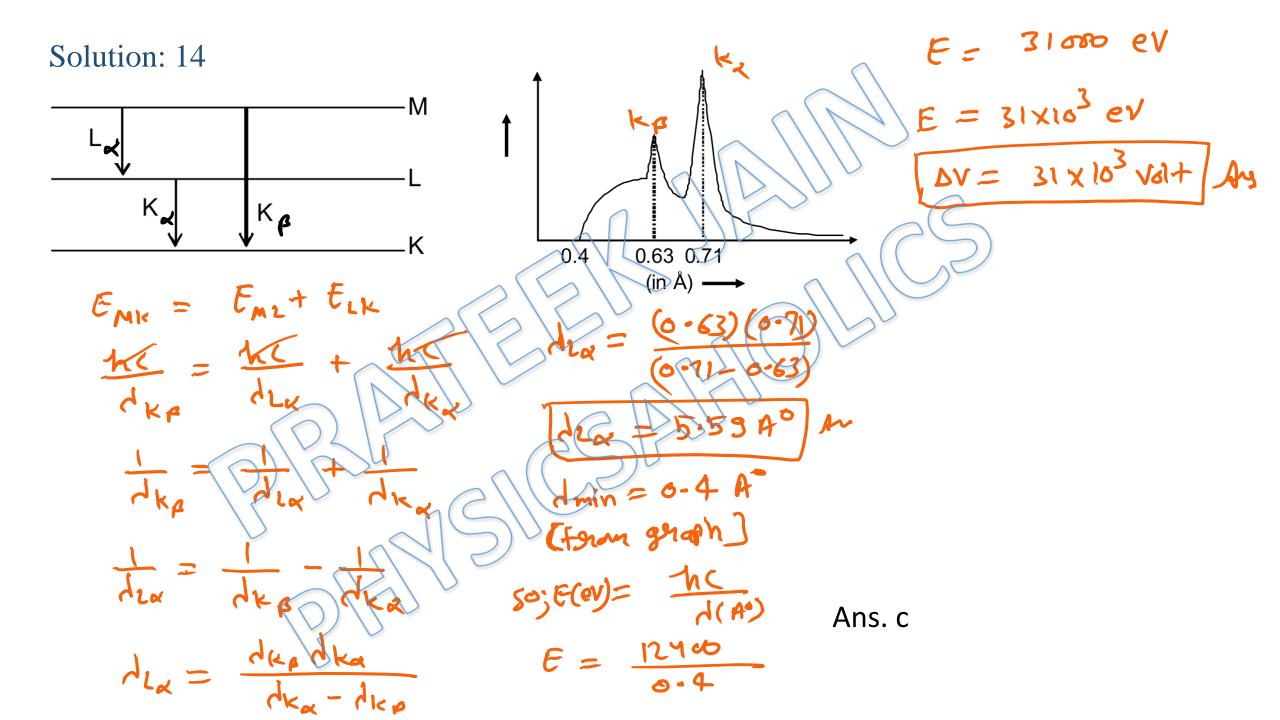
$$\frac{1}{1} = 44.28 \text{ pm}$$
So, after 2nd collision
$$E = 70\% \text{ of (nemaining)}$$

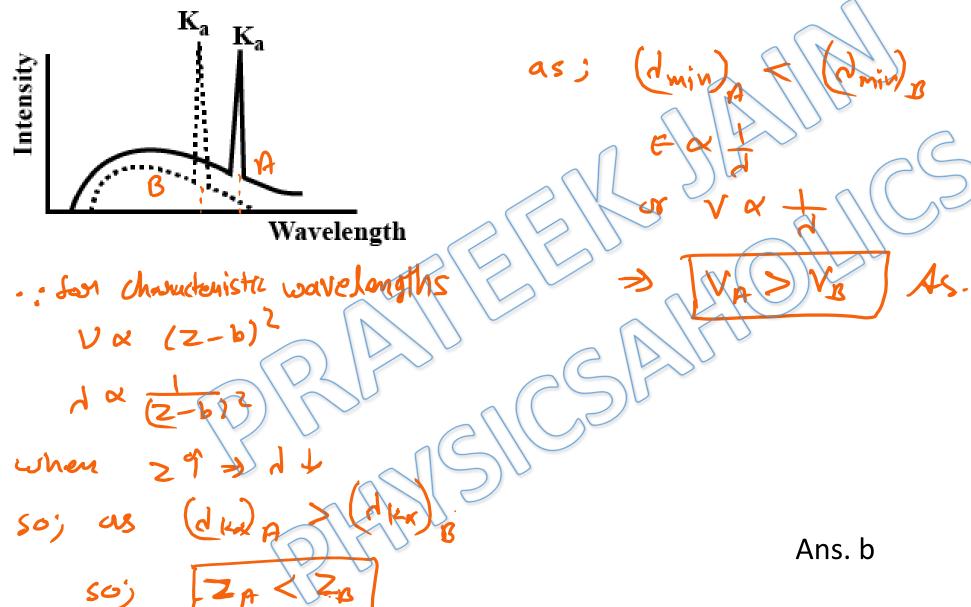
$$= 70\% \left[30\% \text{ of initial Energy} \right]$$

$$= \frac{10}{100} \left[\frac{30}{100} \times 40,000 \right]$$

$$E = 8400 eV$$

$$\frac{1}{10} = \frac{12400}{8400} = 14761 \text{ As}$$
Ans. b


$$\frac{1}{n} = R(z-1)^{2} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right)$$


-: for kx; b=1 and N1=1

So;
$$\frac{1}{d} = R(2-1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2} \right)$$

$$(Z-1)^2 = 1533-25$$

Ans. d

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/46

Video Solution on YouTube:-

https://youtu.be/veQ1_ryXN94

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/19

@Physicsaholics

@Physicsaholics_prateek

@NEET_Physics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS